2D Jump

Mathematics

Amzy (Amalia) Zarcu

Purpose

Gravity Jump Height

Velocity ' Time to Peak

By the end of this presentation, you should also have a better
understanding of quadratic equations. .

R

What shape does a jump follow?

That's right! A Parabola or
Quadratic Curve.

More specifically

The Projectile Motion Formula

1
f(t) = Egtz + Vol + Do

Where:

g = gravity
v = Initial velocity | hetalakae Tt -
po = Initial position : —— —

Linking the Projectile Motion Formula with
the Quadratic Equation in the General Form

f(x) =ax*+bx+c

Substituting:

f(t) = =gt + vyt + pg

But the Standard/Vertex Form Proves
much more Useful

PR
/ /o0 N\

Manipulating the general
form we can deduct:

b h — X position
h=——

2a

b2
k=c——

4a k — Y position

Before we move on let’s take a look at
an interactive example

https://www.desmos.com/calculator/zz3vamnwzt

https://www.desmos.com/calculator/zz3vamnwzf

Linking the Projectile Motion Formula with
the Quadratic Equation in the Standard Form

Substituting:

X—t 5
O =aG-mtk ety f@) =2g(t+ L) 4py -
y) 2 o Zg

h_—20

Formula in Action

How effective will it be to
have to tweak the gravity
and velocity?

Let's find out by trying
out my demo.

' %5 - 2d jumping
onewm|oae

Lrawvity:

Initial Melo fy ¥ 308
2 Data X
D C Q
™ o w0

B ./games/2d-jumping/game json
0.000 asymmetricjump
20,000 gridSize
300.000 jumpHeight
50,000 speedX

0.750 timeTofFall
2.000 timeToPeak

Wren:0.8MB | Draw Calls:3 | Sprites:1 | Version:0.4.2

193, 238

Mapping In relation to time:

https://www.desmos.com/calculator/cnvbkzekud

The Intuitive Approach

2h
— = 2
Through 0 th 1 v, voz
manipulations f(t) = E‘g t—| —— + Do — o
we get: o 8 g
I th° I
a h k
h = height of jum
° s Let’s look at the improved version of my demo to
t, = time to peak demonstrate.

Desmos toy: https://www.desmos.com/calculator/zhuggbhbgi

Which Form to Use?

| found it easiest to use the
if (__inAir) {
__posY = Game.QuadraticGeneral(dt, 1 / 2 = __grawvity, __velocityY¥, __posY)

General Form | __velocityY = __welocityY + __gravity # dt

for actual jJump implementation.

var a = __gravity / (2 * __spoedX * __speedX)
But mUCh better to use the var h = eurveXPos - __speedX % __imitialVeleecityY / __gravity
var k = —__initialVelocityY * __initialVelocityY / (2 # __gravity) + __groundHeight

var step = 1
Standard Form _
var xMin = curveXPos
var xMax = xMin + __speedX * __timeToPeak #* 2

for the visualization.

Game.DrawParabolaStandard(a, h, k, color, step, xMin, xMax, __groundHeight, Mum.infinity)

*Code uses Wren scripting language

EXpanSiOn For this demonstration | implemented

different jump/fall times.

' ¥s - 2d jumping

2neEwoooe A

This concept can also be EEEEEE]
expanded into composite m A
. £ Data >
CuUrves: e :

s 2% &

B ./games/2d-jumping/game.json
1.000 asymmetricjump
20.000 gridSize

* Different times to 0008 Jmpseion |
ascend/descend — it 2
fﬁ‘i
* Double jumps
Wren:0.6MB | Draw Calls:3 | Sprites:1 | Version 042

Video demo: https://youtu.be/Lo9Msm9ZIRg

Thank You for Listening!

Questions?

	Slide 1: 2D Jump Mathematics
	Slide 2: Purpose
	Slide 3: What shape does a jump follow?
	Slide 4: More specifically
	Slide 5: Linking the Projectile Motion Formula with the Quadratic Equation in the General Form
	Slide 6: But the Standard/Vertex Form Proves much more Useful
	Slide 7: Before we move on let’s take a look at an interactive example
	Slide 8: Linking the Projectile Motion Formula with the Quadratic Equation in the Standard Form
	Slide 9: Formula in Action
	Slide 10: The Intuitive Approach
	Slide 11: Which Form to Use?
	Slide 12: Expansion
	Slide 13: Thank You for Listening!

