2D Jump Mathematics

Amzy (Amalia) Zarcu

Purpose

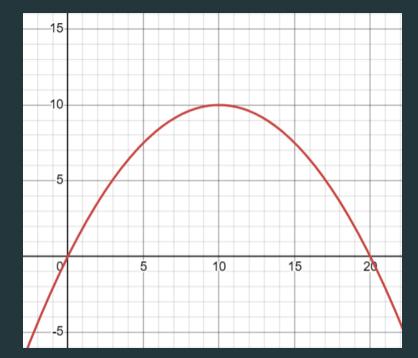
Gravity Velocity

Jump Height Time to Peak

By the end of this presentation, you should also have a better understanding of **quadratic equations**.

What shape does a jump follow?

That's right! A **Parabola** or **Quadratic Curve**.



More specifically

The Projectile Motion Formula

$$f(t) = \frac{1}{2}gt^2 + v_0t + p_0$$

Where:

g = gravity $v_0 = \text{initial velocity}$ $p_0 = \text{initial position}$

Linking the Projectile Motion Formula with the Quadratic Equation in the **General Form**

Substituting:

$$f(x) = ax^2 + bx + c$$

$$x \rightarrow t$$

$$a \rightarrow \frac{1}{2}g$$

$$b \rightarrow v_0$$

$$c \rightarrow p_0$$

$$f(t) = \frac{1}{2}gt^2 + v_0t + p_0$$

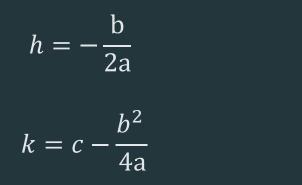
General Form: $f(x) = ax^2 + bx + c$

But the **Standard/Vertex Form** Proves much more Useful

$$f(x) = a(x^2 - h) + k$$

Manipulating the general form we can deduct:

 $a \rightarrow$ steepness of the curve



 $h \rightarrow X$ position

 $k \rightarrow Y$ position

Before we move on let's take a look at an interactive example

https://www.desmos.com/calculator/zz3vamnwzf

Linking the Projectile Motion Formula with the Quadratic Equation in the **Standard Form**

Substituting:

$$f(x) = a(x^2 - h) + k$$

$$\begin{array}{l} x \to t \\ a \to \frac{1}{2}g \\ h \to -\frac{v_0}{g} \\ k \to p_0 - \frac{v_0}{g} \end{array}$$

$$f(t) = \frac{1}{2}g\left(t + \frac{v_0}{g}\right)^2 + p_0 - \frac{{v_0}^2}{2g}$$

Formula in Action

How effective will it be to have to tweak the gravity and velocity?

Let's find out by trying out my demo.

🛂 xs - 2d jumping				- 🗆 X
Ĵ∥Ŝ⊯₿0≬₿				
Gravity: -158 Initial Velocity \	: 300		193, 259	
🗧 🔤 Data	×			
5 C	Q			
œ ≜ ∰ ¢				
./games/2d-jumping/	game.json			
0.000 asymmetricJur	np			
20.000 gridSize				
300.000 jumpHeight				
50.000 speedX				
0.750 timeToFall				
2.000 timeToPeak		🔬		
		/n		
Wren:0.8MB Draw Calls:3 Sprites:1 Versior	:0.4.2			

The Intuitive Approach

 v_0

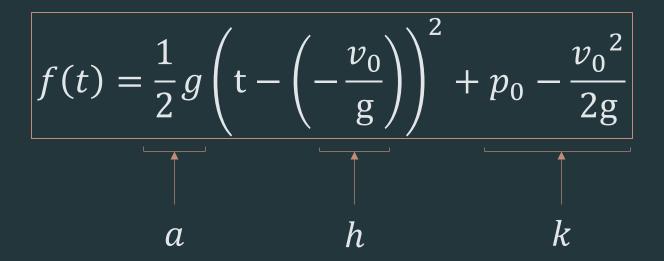
2h

 t_h

JL

Through manipulations we get:

$$g = -\frac{2n}{t_h^2}$$



h =height of jump

 t_h = time to peak

Let's look at the improved version of my demo to demonstrate.

Which Form to Use?

I found it easiest to use the

General Form

for actual jump implementation.

if (__inAir) {
 __posY = Game.QuadraticGeneral(dt, 1 / 2 * __gravity, __velocityY, __posY)
 __velocityY = __velocityY + __gravity * dt

But much better to use the Standard Form for the visualization.

```
var a = __gravity / (2 * __speedX * __speedX)
var h = curveXPos - __speedX * __initialVelocityY / __gravity
var k = -__initialVelocityY * __initialVelocityY / (2 * __gravity) + __groundHeight
var step = 1
var xMin = curveXPos
var xMax = xMin + __speedX * __timeToPeak * 2
Game.DrawParabolaStandard(a, h, k, color, step, xMin, xMax, __groundHeight, Num.infinity)
```

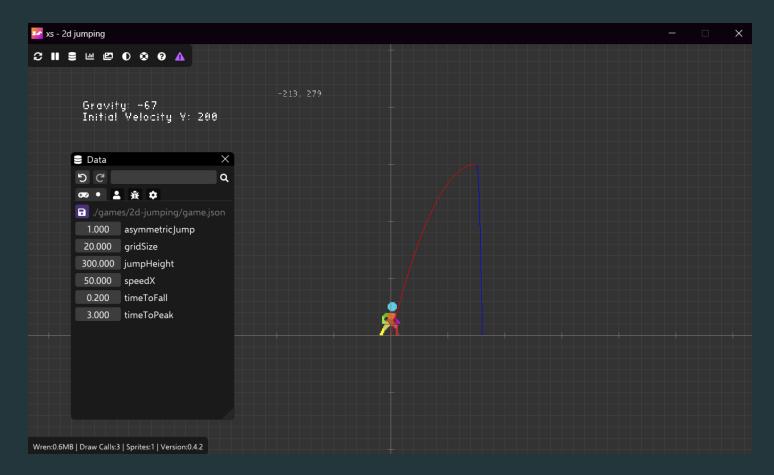
*Code uses Wren scripting language

Expansion

This concept can also be expanded into composite curves:

- Different times to ascend/descend
- Double jumps

For this demonstration I implemented different jump/fall times.



Thank You for Listening!

Questions?

